

芯海通用 MCU 应用笔记

EVB-CS32F103xB 开发板 V1.0 用户手册

V1.0

摘要

本文档描述了 CS32F103xB 开发板 V1.1 的硬件资源配置, Pack 包的安装,常用外设的例程介绍等,帮助用户快速使用 CS32F103xB 开发板,评估 CS32F103xB 系列芯片的性能。

版本

历史版本	修改内容	日期
V1.0	初版生成	2022-09-19

目录

1 CS32F103xB 开发板 V1.1 硬件	3
2 例程 - ADC_Base	
3 例程 - CRC_Calculation	12
4 例程 - EXTI	
5 例程 - GPIO_TOGGLE	
6 例程 - RTC_RealTime	
7 例程 - I2C_Eeprom	
8 例程 - SPI_FLASH	
9例程 - SysTick\Interrupt	
10 例程 - FWDT	
11 例程 - TIM\PWM_Output	24

CS32F103xB 开发板 V1.1 硬件 1

开发板实物图和主要功能说明如下:

图 1 CS32F103xB 开发板 V1.1

开发上件芯片,连接器等信息如下:

		表 I 心斤连按器况明表	
芯片	U1	CS32F103VBT7	MCU
芯片	U3	AMS1117-3.3	LDO
芯片	-U4	CP2102	USB to UART
芯片	U5	AT24C02C	EEPROM
芯片	U6	W25X16SSIG	SPI Flash
芯片	U7	TJA1050	CAN Transceiver
按键	B1	KEY	用户按键
按键	B2	KEY	复位按键
跳线/连接器	J1	3x1 单排排针	USB CAN 功能选择
跳线/连接器	J2	3x1 单排排针	UART3
跳线/连接器	J3	3X2 双排排针	电源跳线
跳线/连接器	J4	2x1 单排排针	电流测量端
跳线/连接器	J5	3x1 单排排针	USB CAN 功能选择
跳线/连接器	CON1	10X1 单排排母	Arduino 接口
跳线/连接器	CON2	8X1 单排排母	Arduino 接口
跳线/连接器	CON3	6X1 单排排母	Arduino 接口
www.chipsea.com		3 / 25	芯海科技(深圳)股份有限公司

www.chipsea.com

本资料为芯海科技专有财产,非经许可,不得复制、翻印或转变其他形式使用。

This document is exclusive property of CHIPSEA and shall not be reproduced or copied or transformed to any other format without prior permission of CHIPSEA

^{3 / 25}

跳线/连接器	CON4	8X1 单排排母	Arduino 接口
跳线/连接器	CON5	2X2 双排排针	EEPROM 芯片跳线
跳线/连接器	CON6	Micro-B 母座	Micro USB 转串口
跳线/连接器	CON7	2x10 牛角插座	J-Link 调试器接口
跳线/连接器	CON8	4X2 双排排针	SPI FLASH 芯片跳线
跳线/连接器	CON9	36X2 双排排针	
跳线/连接器	CON10	36X2 双排排针	
跳线/连接器	CON11	Micro-B 母座	Micro USB 供电
跳线/连接器	CON12	2x1 单排排针	电位器跳线
跳线/连接器	CON13	2x1 单排排针	CAN 总线
跳线/连接器	CON14	4x1 单排排针	3.3V
LED	LED1	GPIO 控制 LED	PB15
LED	LED2	GPIO 控制 LED	PB14
LED	LED3	电源 LED	5V, LDO 输入源

▶ 电源部分电路:可以分别通过两个 USB 母座供电,也可以通过调试器 J-Link 给 开发 板供电。

▶ 调试器电路:支持 JTAG 和 SWD 模式,调试器 VCC 可直接给 MCU 供电。

www.chipsea.com

4 / 25

芯海科技 (深圳)股份有限公司

▶ USB 转串口电路: USB 通过 CP210 连接到 MCU USART3 的 PB10 PB11。

图 4 USB 转串口电路

▶ EEPROM 电路: I2C1 使用 PB6 和 PB7 两个 PIN 来连接问 EEPROM.

▶ SPI FLASH 电路: SPI1 使用 PA4 PA5 A6 PA7 来连接 SPI FLASH

 CAN 总线电路: MCU CAN 总线的 PA11 PA12 接到 CAN 收发器 TJA1050, 再通过 CON13 接到外部 CAN 总线上。

▶ 电位器电路: 这个一个独立的可调分压电路,可把 CON2 的 PIN1 连接到 ADC 的输入,测量 ADC 采样值。

www.chipsea.com

6/25 芯海科技(深圳)股份有限公司 本资料为芯海科技专有财产,非经许可,不得复制、翻印或转变其他形式使用。

This document is exclusive property of CHIPSEA and shall not be reproduced or copied or transformed to any other format without prior permission of CHIPSEA

Pack 包安装和例程的编译下载的基本设置

CS32F103 最新 pack 包是 2.0.5, 把 后辍名称. pack 强制改成 .zip 解压,就可以得到 例程文件。 双击 pack 包文件,可以进入 pack 包安装过程。

ChipSea.CS32F1xx_DFP.2.0.5.pack ChipSea.CS32F1xx_DFP.2.0.5.zip

k olizip. chipsea csszrixx_DFP 2.0.5	^
elcome to Keil Pack Unzip	
elease 6/2022	
his program installs the Software Pack:	
ChipSea CS32F1xx_DFP 2.0.5	
ChipSea CS32F1xx_DFP 2.0.5 ChipSea CS32F1 Series Device Support, Drive	ers and Examples
ChipSea CS32F1xx_DFP 2.0.5 ChipSea CS32F1 Series Device Support, Drive	ers and Examples
ChipSea CS32F1xx_DFP 2.0.5 ChipSea CS32F1 Series Device Support, Drive	ers and Examples
ChipSea CS32F1xx_DFP 2.0.5 ChipSea CS32F1 Series Device Support, Drive	ers and Examples
ChipSea CS32F1 xx_DFP 2.0.5 ChipSea CS32F1 Series Device Support, Drive Destination Folder C:\Keil_v5\ARM\PACK\ChipSea\CS32F1xx	x_DFP\2.0.5
ChipSea CS32F1xx_DFP 2.0.5 ChipSea CS32F1 Series Device Support, Drive Destination Folder C:\Keii_v5\ARM\PACK\ChipSea\CS32F1xx Keil_v5\ARM\PACK\ChipSea\CS32F1xx Keil Pack Unzip	x_DFP\2.0.5

图 9 安装 Pack 包

安装完 Pack 后,要确认 KEIL 工程选的是最新的 Pack 版本。

×

Software Packs	_	
'endor: ChipSea	Software Pack	_
levice: CS32F103VB	Pack: ChipSea.CS32F1xx_DFP.2.0.5	
oolset: ARM	URL: <u>http://www.keil.com/pack/</u>	
	The CS32F10x is a series of 32-bit ARM Cortex-M3 based microcontroller: - ranging from 48 to 100 pins. - mainum operating frequency is 72 MHz. - operate in the temperature range of -40 to 85°C (or 105°C - power supply range of 2.0 to 3.6V. - offer a set of low power modes. - standard communication inerfaces (SPI, USART, I2C, I2S - two 12-bk ADC, - three general timers and one advanced timer. The CS32F103xB microcontroller offers: - 128 KBytes FLASH - 20 KBytes SRAM).
	≓)	

🔢 Options for Target 'Target 1'

Device | Target | Output | Listing | User | C/C++ (AC6) | Asm | Linker Debug | Utilities |

Limit Speed to	Real-Time	ULIN	Kplus Debugger	^	Jocurigs
 Load Applicat nitialization File: 	ion at Startup 🔽 Run to main()	Initializatio	K / J-TRACE Contex is Contex-M Debugger nk Debugger cro Debugger nk Debugger		e main()
Restore Debug Breakpoin Watch Wi Memory D	Session Settings ts IV Toolbox indows & Performance Analyzer isplay IV System Viewer	Restore Stella SiLat Bre Attera TI XE Watch V	ns ICDI Is UDA Debugger Blaster Cottex Debugger S Debugger Vindows Display V System V	v	
CPU DLL:	Parameter:	Driver DLL:	Parameter:		
SARMCM3.DLL	-REMAP	SARMCM3.DL			
Dialog DLL:	Parameter:	Dialog DLL:	Parameter:		
DCM.DLL	-pCM3	TCM.DLL	-pCM3		
Warn if outda	ted Executable is loaded Manage Component \	Warn if outo	lated Executable is loaded		
		lener Description 1			
	07 0		. C]		Wala

Selected Device:	Cortex-M3			Little Endian * Core #C	
Manufacturer	Device	Core	NumCores	Flash Size	^
	∨ Filter	×	Filter	Filter]
Unspecified	ARM7	ARM7	1		Ĩ.
Unspecified	ARM9	ARN9	1	-	1
Unspecified	ARM11	ARM11	1	-	1
Unspecified	Cortex-A5	Cortex-A5	1	-	1
Unspecified	Cortex-A7	Cortex-A7	1	-	1
Unspecified	Cortex-A8	Cortex-A8	1	-	1
Unspecified	Cortex-A9	Cortex-A9	1]
Unspecified	Cortex-A12	Cortex-A12	1	-	
Unspecified	Cortex-A15	Cortex-A15	1		
Unspecified	Cortex-A17	Cortex-A17	1		
Unspecified	Cortex-A53	Cortex-A53	1	-	
Unspecified	Cortex-A57	Cortex-A57	1		
Unspecified	Cortex-A72	Cortex-A72	1	-	
Unspecified	Cortex-M0	Cortex-M0	1	₩	
Unspecified	Cortex-M0+	Cortex-M0	1		
Unspecified	Cortex-M1	Cortex-M1	1	-	
Unspecified	Cortex-M3	Cortex-M3	1		
Unspecified	Cortex-M4	Cortex-M4	1	-	
Unspecified	Cortex-M7	Cortex-M7	1	-	
Unspecified	Cortex-M23	Cortex-M23	1		
Unspecified	Cortex-M33	Cortex-M33	1	-	
Unspecified	Cortex-M55	Cortex-M55	1	<u>≅</u>	
Unspecified	Cortex-R4	Cortex-R4	1		
Unspecified	Cortex-R5	Cortex-R5	1	-	~

图 13 弹出型号选择,点 Cortex-M3

www.chipsea.com

8 / 25

芯海科技 (深圳)股份有限公司

打开 GPIO_TOGGLE 例程

路径: ChipSea.CS32F1xx_DFP.2.0.5\Boards\Example\GPIO\GPIO_TOGGLE\Project 程序编译下载后,按下复位 B2 键, LED1 LED2 闪烁起来。

注意:此时开发板不做任何跳线,只需要通过 J-Link 用排线连上开发板, MCU 就可以正常运行,LED1 LED2 可以正常闪烁起来。 J-Link 的 VCC 直接连接到 MCU 来供电,没有通过 LDO 来给 MCU 供电。

图 14 GPIO 闪灯例程

2 例程 - ADC_Base

例程: ADC Base

路径: ChipSea.CS32F1xx_DFP.2.0.5\Boards\Example\ADC\ADC_Base\Project

硬件配置: ADC: PC0 (CON3.6, 可以将 PC0 连接到 CON12.1, 调节电阻分压, 观察

串口打印数据的变化)

UART3: PB11 (115200)

(可以通过 Micro USB 连接 CON6, 用板载 USB 转串口 观察 Printf 数据, 也可以直接用 USB 转串口工具, 接 J2.2)

说明 MCU 采集 PC0 上的电压并输出到串口。

Printf 信息如下:

AD conversion start... ADC voltage = 1421 mV. ADC voltage = 1420 mV. ADC voltage = 1421 mV. ADC voltage = 1420 mV. ADC voltage = 1420 mV. ADC voltage = 1421 mV. ADC voltage = 1419 mV.

Main 函数如下:

```
int main(void)
 uint16_t value = 0;
 uint16 t voltage = 0;
 uint32_t i = 0xFFFFFF;
 /* Configure USART3 as the printing port. */
 usart_config();
 /* Configure ADC input pin(PC0). */
 adc_gpio_init();
  /* Configure ADC1. */
 adc_bsp_init();
 printf("AD conversion start...\n\r");
 while(1)
    /* Start ADC1 Software Conversion. */
     ADC_REG_CONV_START(ADC1);
    /* Wait for the conversion to complete. */
    while(RESET == __ADC_FLAG_STATUS_GET(ADC1, ADC_FLAG_EOC));
    /* Calculate the voltage value. */
    value = __ADC_CONV_VALUE_GET(ADC1);
    voltage = ((value * 3300) / 0xFFF);
    printf("ADC voltage = %d mV.\n\r", voltage);
    /* a short delay */
    while(i --);
    i = 0xFFFFF;
  3
www.chipsea.com
                                                               10/25
                                                                                              芯海科技 (深圳)股份有限公司
```


UART 配置: PB10 PB11 配置成 USART3, 115200

void usart_config(void) usart_config_t ptr_usart; /* Enable clocks. */ RCU_APB2_CLK_ENABLE(RCU_APB2_PERI_GPIOB); RCU_APB1_CLK_ENABLE(RCU_APB1_PERI_USART3); RCU_APB2_CLK_ENABLE(RCU_APB2_PERI_AFIO); /* Configure PB10(TX) and PB11(RX). */ gpio_mode_config(GPIOB, GPIO_PIN_10, GPIO_MODE_OUT_AFPP(GPIO_SPEED_HIGH)); gpio mode config(GPIOB, GPIO PIN 11, GPIO MODE IN PU); /* Configure the basic information of USART3. */ usart_def_init(USART3); ptr usart.baud rate = 115200; ptr usart.data width = USART DATA WIDTH 8; ptr_usart.flow_control = USART_FLOW_CONTROL_NONE; ptr_usart.parity_check = USART_PARITY_NONE; ptr_usart.stop_bits = USART_STOP_BIT_1; ptr_usart.transceiver_mode = USART_MODE_TX_RX; usart_init(USART3, &ptr_usart); /* Enable USART3. */ USART_ENABLE(USART3); int fputc(int ch, FILE *f) (void) f; while(USART FLAG STATUS GET(USART3, TC) == RESET); USART_DATA_SEND(USART3, (uint8_t) ch); return ch; ADC 配置: PC0 配置成 ADC ch10 void adc_gpio_init(void) /* Configure PC0 as an analog input port(ADC channel 10). */ RCU_APB2_CLK_ENABLE(RCU_APB2_PERI_GPIOC); gpio_mode_config(GPIOC, GPIO_PIN_0, GPIO_MODE_IN_ANALOG); void adc_bsp_init(void) /* Configure ADC1 clock. */ RCU_APB2_CLK_ENABLE(RCU_APB2_PERI_ADC1); rcu_adcclk_config(RCU_ADCCLK_SEL_PCLK2_DIV8); adc_cfg_t ptr_cfg; /* Configure the basic information of ADC1. */ ADC DEF INIT(ADC1); adc_struct_init(&ptr_cfg); ptr_cfg.ext_trigger = ADC_EXT_TRIGGER_SWSTART; adc_init(ADC1, &ptr_cfg); /* ADC1 regular channel10 configuration. */ adc regular channel config(ADC1, ADC CHANNEL 10, ADC SAMPLE TIME 55 5 CYCLE, 1); /* Enable ADC1. */ _ADC_ENABLE(ADC1); /* Enable ADC1 reset calibration register. */ ADC_RESET_CALI(ADC1); /* Check the end of ADC1 reset calibration register. */ while(__ADC_RESET_CALI_STATUS_GET(ADC1)); /* Start ADC1 calibration. */ ADC CALI START(ADC1); /* Check the end of ADC1 calibration. */ while(__ADC_CALI_STATUS_GET(ADC1)); 芯海科技 (深圳)股份有限公司

www.chipsea.com

11/25

3 例程 - CRC_Calculation

例程: ADC_Base

路径: CS32F1xx_DFP.2.0.5\Boards\Example\CRC\CRC_Calculation\Project

硬件配置: UART3: PB11 (115200)

(可以通过 Micro USB 连接 CON6, 用板载 USB 转串口 观察 Printf 数据, 也可以直接用 USB 转串口工具, 接 J2.2)

说明: MCU 计算数据的 CRC 并输出到串口。

Printf 信息如下:

OCRC calculation result: 379e9f06{

Main 函数如下:

3

```
int main(void)
{
    /* Enable CRC clock */
    __RCU_AHB_CLK_ENABLE(RCU_AHB_PERI_CRC);
    usart_config();
    /* Compute the CRC of "data_buf" */
    crc_value = crc_data_buffer_calc((uint32_t *)data_buf, BUFFER_SIZE);
    printf("CRC calculation result: %x\r\n", crc_value);
    while(1)
    (
```


例程 - EXTI 4

例程: EXIT

路径: ChipSea.CS32F1xx DFP.2.0.5\Boards\Example\EXTI\Project

硬件配置: KEY: PC13

LED: LED1 LED2 PB14 PB15

说明:代码编译下载后,复位 MCU,每次按下按键 B1,开发板上 LED 1 LED2 会同 时翻转。

Main 函数如下:

t main(void)

it main(void)
/* nvic configuration */ nvic_config();
/* Initialization LED */ led_init();
exti_init();
while(1) { delay(LED_DELAY);
}

外部中断服务如下:

void EXTI15 10 IRQHandler(void)

if(__EXTI_FLAG_STATUS_GET(EXTI_LINE_13) != RESET) { EXTI_FLAG_CLEAR(EXTI_LINE_13); led1_toggle(); led2_toggle();

外部中断初化函数如下: LED 初始化,

void led init(void) /* Enable the clock */ RCU APB2 CLK ENABLE(RCU APB2 PERI GPIOB); gpio mode_config(GPIOB,GPIO_PIN_15,GPIO_MODE_OUT_PP(GPIO_SPEED_HIGH)); gpio mode config(GPIOB,GPIO PIN 14,GPIO MODE OUT PP(GPIO SPEED HIGH)); GPIO_PIN_RESET(GPIOB,GPIO_PIN_15); //LED1 GPIO PIN RESET(GPIOB, GPIO PIN 14); //LED2 void led1_toggle(void) GPIOB->DO ^= GPIO PIN 15; void led2_toggle(void) GPIOB->DO ^= GPIO_PIN_14; void nvic_config(void) nvic_init_t nvic_struct = {0};

www.chipsea.com

13 / 25

nvic_priority_group_config(NVIC_PriorityGroup_2);

/* Enable and configure interrupt channel */
nvic_struct.nvic_irq_pre_priority = 0;
nvic_struct.nvic_irq_sub_priority = 1;
nvic_struct.nvic_irq_enable = ENABLE;
nvic_init(&nvic_struct);

void exti_init(void)

/* Enable the GPIOC clock */ __RCU_APB2_CLK_ENABLE(RCU_APB2_PERI_GPIOC); /* Enable the AFIO clock */

___RCU_APB2_CLK_ENABLE(RCU_APB2_PERI_AFIO);

/* PC13 -- button */ gpio_mode_config(GPIOC, GPIO_PIN_13, GPIO_MODE_IN_FLOAT);

/* Config exti line to pin */ gpio_exti_pin_config(GPIO_EXTI_EVEVT_PORT_GPIOC, GPIO_EXTI_EVENT_PIN13);

/* Config rising detect */ __EXTI_EDGE_ENABLE(EXTI_EDGE_RISING,EXTI_LINE_13);

/* Enable the interrupt */ __EXTI_INTR_ENABLE(EXTI_LINE_13);

例程 - GPIO_TOGGLE 5

例程: GPIO TOGGLE

路径: ChipSea.CS32F1xx DFP.2.0.5\Boards\Example\GPIO\GPIO TOGGLE

硬件配置: LED: LED1 LED2 PB14 PB15

说明:代码编译下载,复位 MCU,开发板上 LED1 LED2 会同步快速闪动起来。

Main 函数, LED 初始化函数如下:

```
}int main(void)
 /* Initialization LED */
 led init();
 while(1)
 {
   delay(LED_DELAY);
   led1_toggle();
   led2_toggle();
 }
void led init(void)
 /* Enable the clock */
   RCU APB2 CLK ENABLE(RCU APB2 PERI GPIOB);
 gpio_mode_config(GPIOB,GPIO_PIN_15,GPIO_MODE_OUT_PP(GPIO_SPEED_HIGH));
 gpio mode_config(GPIOB,GPIO_PIN_14,GPIO_MODE_OUT_PP(GPIO_SPEED_HIGH));
   GPIO_PIN_RESET(GPIOB,GPIO_PIN_15); //LED1
   GPIO_PIN_RESET(GPIOB,GPIO_PIN_14); //LED2
void led1_toggle(void)
 GPIOB->DO ^= GPIO_PIN_15;
void led2_toggle(void)
 GPIOB->DO ^= GPIO PIN 14;
```

www.chipsea.com 15/25 本资料为芯海科技专有财产,非经许可,不得复制、翻印或转变其他形式使用。 This document is exclusive property of CHIPSEA and shall not be reproduced or copied or transformed to any other format without prior

permission of CHIPSEA

芯海科技 (深圳)股份有限公司

例程 - RTC RealTime 6

例程: RTC RealTime

路径: ChipSea.CS32F1xx DFP.2.0.5\Boards\Example\RTC\RTC RealTime\Project

硬件配置: RTC

UART3: PB11 (115200)

(可以通过 Micro USB 连接 CON6, 用板载 USB 转串口 观察 Printf 数据, 也可以直接 用 USB 转串口工具, 接 J2.2)

说明:代码编译下载,复位 MCU,串口助手显示时间每一秒刷新一次,秒走满 60 清 0,分钟加一。

Printf 信息如下:

TIME: 08 : 00 : 00 TIME: 08 : 00 : 01 TIME: 08 : 00 : 02 TIME: 08 : 00 : 03 TIME: 08 : 00 : 04

Main 函数, RTC 配置函数如下:

```
int main(void)
 uint32 t hour = 0;
 uint32_t min = 0;
 uint32_t second = 0;
 uint32 t cnt value = 0;
 /* Configure USART3 */
 usart config();
 /* Configure RTC */
 rtc_config();
 /* Configure NVIC */
 nvic config();
 while(1)
  3
    if(second_flag == 1)
      /* Time is 23:59:59 */
      if( RTC COUNTER GET() == TIME RST)
        /* Reset RTC Counter */
        rtc_counter_set(0);
        /* Wait until last write operation on RTC registers has finished */
        while(__RTC_FLAG_STATUS_GET(RTC_FLAG_OPERATION_COMPLETE) == RESET);
      cnt value = RTC COUNTER GET();
      /* Compute hours */
      hour = (cnt value / 3600);
      /* Compute minutes */
      min = ((cnt_value % 3600) / 60);
      /* Compute seconds */
      second = ((cnt value % 3600) % 60);
      printf("TIME: %0.2d : %0.2d : %0.2d \r\n", hour, min, second);
```

www.chipsea.com

16/25

second_flag = 0;
}

void rtc_config(void)

}

/* Enable PMU clock */ _____RCU_APB1_CLK_ENABLE(RCU_APB1_PERI_PMU);

/* Allow access to RTC Domain */ pmu_vbat_domain_write_config(ENABLE);

/* Enable LXT clock */ RCU_FUNC_ENABLE(LXT_CLK); /* Wait till LXT is ready */ while(RESET == rcu_clkready_reset_flag_get(RCU_FLAG_LXT_STABLE));

/* Select LXT as RTC Clock Source */ rcu_rtcclk_config(RCU_RTCCLK_SEL_LXT);

/* Enable RTC Clock */ __RCU_RTC_CLK_ENABLE();

/* Wait for RTC registers synchronization */
rtc_wait_for_synchronize();
/* Wait until last write operation on RTC registers has finished */
while(RTC FLAG STATUS GET(RTC FLAG OPERATION COMPLETE) == RESET);

/* Enable the RTC Second interrupt*/ __RTC_INTERRUPT_ENABLE(RTC_INTERRUPT_SECOND); /* Wait until last write operation on RTC registers has finished */ while(__RTC_FLAG_STATUS_GET(RTC_FLAG_OPERATION_COMPLETE) == RESET); /* RTC period = RTCCLK/RTC_PR = (32.768 KHz)/(32767+1) */ rtc_prescaler_set(32767); /* Wait until last write operation on RTC registers has finished */ while(__RTC_FLAG_STATUS_GET(RTC_FLAG_OPERATION_COMPLETE) == RESET); /* Time starts at 8 o'clock in the morning */ rtc_counter_set(AM_8);

/* Wait until last write operation on RTC registers has finished */ while(RTC FLAG STATUS GET(RTC FLAG OPERATION COMPLETE) == RESET);

7 例程 - I2C_Eeprom

例程: I2C_Eeprom

路径: ChipSea.CS32F1xx_DFP.2.0.5\Boards\Example\I2C\I2C_Eeprom\project

硬件配置: I2C1(I2C1 SCL:PB6 SDA: PB7)

通过 CON5 跳线连接板载 EEPEOM AT24C02

LED: LED2

说明: MCU 循环读写数据到 EEPROM, 第个循环 LED2 翻转一次。逻辑分析仪抓 I2C 时序如下:

Main 函数以及 I2C 配置函数如下:

```
int main(void)
 uint8_t data[4]={0xA7,0x55,0xC5,0x5C};
 uint8 t i=0;
 volatile uint8_t readBuf[4]={0x00};
 /*LED init*/
 led_init();
 /*delay init*/
 systick_delay_init();
 /*I2C configure*/
 i2c_configure();
 /*gpio configure*/
 gpio_configure();
 while(1)
    /*Eeprom write*/
    ret = write_at24c02(0x00,data,4);
    /*Delay*/
    systick_delay_ms(10);
    /*Eeprom read*/
    ret = read_at24c02(0x00,readBuf,4);
    /*Delay*/
    systick_delay_ms(10);
    /*LED toggle*/
    led2_toggle();
    for(i = 0; i < 4; i++)
    3
      readBuf[i] = 0;
    }
 }
www.chipsea.com
                                                                  18/25
                                                                                                  芯海科技 (深圳)股份有限公司
```


void gpio_configure(void)

/* Enable the clock */ __RCU_APB2_CLK_ENABLE(RCU_APB2_PERI_GPIOB); _/*SCL*/ gpio_mode_config(GPIOB,GPIO_PIN_6,GPIO_MODE_OUT_AFOD(GPIO_SPEED_MEDIUM)); _/*SDA*/

gpio_mode_config(GPIOB,GPIO_PIN_7,GPIO_MODE_OUT_AFOD(GPIO_SPEED_MEDIUM));

void i2c_configure(void)

i2c_config_t i2c_struct;

__RCU_APB1_CLK_ENABLE(RCU_APB1_PERI_I2C1);

__I2C_SW_RESET(I2C1); __I2C_NOT_RESET(I2C1);

/* initialize the I2C mode */
i2c_struct.mode = I2C_MODE_I2C;
/* initialize the I2C speed 100KHz */
i2c_struct.speed = 100000;
/* initialize the I2C duty cycle Tlow/Thigh = 2 */
i2c_struct.duty_cycle = I2C_DUTY_CYCLE_2;
/* initialize the I2C address1 */
i2c_struct.address1 = 0xA0;
/* initialize the I2C_ack enable */
i2c_struct.ack = I2C_ACK_ENABLE;
/* initialize the I2C address mode */
i2c_struct.addr_mode = I2C_ADDRESS_MODE_7BITS;

i2c_init(I2C1,&i2c_struct);

/*Enable I2C*/ __I2C_ENABLE(I2C1);

8 例程 - SPI_FLASH

例程: SPI FLASH

路径: ChipSea.CS32F1xx_DFP.2.0.5\Boards\Example\SPI\SPI_FLASH\Project

硬件配置: SPI (SPI1: PI_SCK: PA5 SPI_MISO: PA6 SPI_MOSI: PA7 CS: PA4)

通过 CON8 跳线连接 板载 SPI FLASH W25X16

UART3: PB11 (115200)

(可以通过 Micro USB 连接 CON6, 用板载 USB 转串口 观察 Printf 数据,也可以直接用 USB 转串口工具,接 J2.2)

说明: MCU 循环读写 SPI FLASH,并对比数据,通过串口提示是否读写成功。

Printf 信息如下:

0SPI FLASH W25Q64 operation Success! Main 函数,及 SPI 配置函数如下: int main(void) uint8_t spi_wbuf[] = "SPI test!"; uint8 t spi rbuf[16]; uint8 t tx buffer[60]; uint8 t print len = 0; uint8 t len = 0; memset(spi_rbuf,0,16); memset(tx buffer,0,60); len = sizeof(spi_wbuf); usart_config(); spi flash init(); delay_us(20000); spi flash wait sector erase(0x00000); spi_flash_buffer_write(spi_wbuf, 0x00000, len); spi_flash_buffer_read(spi_rbuf, 0x00000, len); if(buf_compare(spi_wbuf, spi_rbuf, len) == 1) print len = (uint8 t)sprintf((char *)tx buffer, "SPI FLASH W25Q64 operation Success!"); usart send(tx buffer, print len); else print len = (uint8 t)sprintf((char *)tx buffer, "SPI FLASH W25Q64 operation Failed!"); usart send(tx buffer,print len); } while(1) { } void spi_flash_init(void) spi_config_t spi_config_struct; SPI DEF INIT(SPI1); www.chipsea.com 20/25 芯海科技 (深圳)股份有限公司

感知世界 赋能创新

____RCU_APB2_CLK_ENABLE(RCU_APB2_PERI_SPI1); // SPI GPIO Config gpio_mode_config(GPIOA, GPIO_PIN_5, GPIO_MODE_OUT_AFPP(GPIO_SPEED_HIGH)); //SD_SPI_SCK gpio_mode_config(GPIOA, GPIO_PIN_6, GPIO_MODE_IN_PU); //SD_SPI_MISO gpio_mode_config(GPIOA, GPIO_PIN_7, GPIO_MODE_OUT_AFPP(GPIO_SPEED_HIGH)); //SD_SPI_MOSI gpio_mode_config(GPIOA, GPIO_PIN_4, GPIO_MODE_OUT_PP(GPIO_SPEED_HIGH)); ___GPIO_PIN_SET(GPIOA, GPIO_PIN_4); //SPI Config spi_config_struct.spi_direct = SPI_DIR_2LINES_FULL_DUPLEX; spi_config_struct.spi_direct = SPI_DIR_2LINES_FULL_DUPLEX; spi_config_struct.spi_epol = SPI_MODE_MASTER; spi_config_struct.spi_epol = SPI_CPOL_HIGH; spi_config_struct.spi_epol = SPI_CPOL_HIGH; spi_config_struct.spi_epol = SPI_CPOL_HIGH; spi_config_struct.spi_nss = SPI_SSM_SW;

spi_config_struct.spi_predivid = SPI_BAUD_RATE_PDIV_32;

RCU_APB2_CLK_ENABLE(RCU_APB2_PERI_GPIOA);

spi config struct.first bit = SPI FIRST BIT MSB;

spi_config_struct.crc_polynomial = 7;

spi_init(SPI1, &spi_config_struct);

spi_software_nss_config(SPI1,SPI_SOFTWARE_NSS_SET);

_____SPI_ENABLE(SPI1);

9 例程 - SysTick\Interrupt

例程: SysTick\Interrupt

路径: ChipSea.CS32F1xx_DFP.2.0.5\Boards\Example\SysTick\Interrupt\Project

硬件配置: Systick

LED: LED1 LED2 PB14 PB15

说明: 代码编译下载,复位 MCU。LED1 LED2 同步闪烁起来。通过 Systick 延时 来定时翻转 LED.

Main 函数, Systick 中断服务函数, 延时函数如下:

```
int main(void)
  /* Init RCU configuration */
  rcu init();
  /* Init LED */
  led_init();
  if (SysTick_Config(SystemCoreClock / 1000))
  {
    /* error */
    while (1);
  while(1)
  -{
    systick_delay_int(500);
    led1_toggle();
    led2_toggle();
  }
void SysTick_Handler(void)
  /* User code */
  systick_decrement();
void systick_delay_int(__IO uint32_t count)
  delay ticks = count;
  while(delay_ticks != 0);
void systick_decrement(void)
  if(delay_ticks != 0)
    delay_ticks --;
  }
```


10 例程 - FWDT

例程: FWDT

路径: ChipSea.CS32F1xx_DFP.2.0.5\Boards\Example\FWDT\Project

硬件配置: FWDT

LED: LED2

说明:代码编译下载,复位MCU。 LED2 会亮起来。如果增加延时

systick_delay_ms(300); MCU 会一直复位 LED2 不会亮。

Main 函数, FWDT 配置函数如下:

int main(void)

/* Initialization LED */ led init(); systick delay init(); fwdt_init(0xFFF,FWDT_PRESCALER_4); while(1) £ fwdt_reload_counter(); systick_delay_ms(200); systick_delay_ms(300); // 如果增加这段代码,会造成 FWDT 超时, LED 不会亮 led1 on(); led2_on(); } void fwdt_init(uint16_t reload_value,uint8_t prescaler_value) fwdt_write_access_enable_ctrl(FWDT_WRITE_ACCESS_ENABLE); fwdt_prescaler_set(prescaler_value); fwdt_reload_set(reload_value); fwdt enable();

11 例程 - TIM\PWM_Output

例程: TIM\PWM_Output

路径: CS32F1xx_DFP.2.0.5\Boards\Example\TIM\PWM_Output\Project

硬件配置: TIM2 PA0

说明:代码编译下载,复位 MCU。 PA0 上会有 PWM 输出,周期为1秒,点空比为 25% LED2 会亮起来。

Main 函数, TIM2 配置函数如下:

int main(void) {		
<pre>gpio_config();</pre>		
tim_config();		
while(1); }		
<pre>void tim_config(void) { tim_base_t ptr_time = {0}; tim_choc_t ptr_choc = {0};</pre>		
/* PCLK1 = HCLK/2 */ rcu_pclk1_config(RCU_HCLK_DIV_2); /* PCLK2 = HCLK/2 */ rcu_pclk2_config(RCU_HCLK_DIV_2);		
/* TIM clock enable */ RCU_APB1_CLK_ENABLE(RCU_APB1_PER RCU_APB2_CLK_ENABLE(RCU_APB2_PER RCU_APB1_CLK_ENABLE(RCU_APB1_PER	kI_TIM3); kI_TIM1); kI_TIM2);	
<pre>/* Time base configuration */ ptr_time.clk_div = TIM_CLK_DIV1; ptr_time.ent_mode = TIM_CNT_MODE_UP; ptr_time.pre_div = 10000; ptr_time.pre_div = 7199; tim_base_init(TIM2, &ptr_time);</pre>		
/* PWM1 Mode configuration: Channel1 */ ptr_choc.oc_mode = TIM_OCMODE_PWM1; ptr_choc.output_state = TIM_OUTPUT_EN; ptr_choc.channel = TIM_CHANNEL_1; ptr_choc.polarity = TIM_OUTPUT_POLARITY_F ptr_choc.pulse = 2500; tim_choc_init(TIM2, &ptr_choc);	∃IGH;	
tim_choc_preload_set(TIM2, TIM_CHANNEL_1,	TIM_CHXOC_PRELOAD_ENABLE);	
TIM_FUNC_ENABLE(TIM2, UVAL_SHADO) /* TIM enable */ TIM_ENABLE(TIM2); }	W);	
void gpio_config(void) { RCU_APB2_CLK_ENABLE(RCU_APB2_PER gpio_mode_config(GPIOA, GPIO_PIN_0, GPIO_N }	LI_GPIOA); MODE_OUT_AFPP(GPIO_SPEED_HIGH));	
www.chipsea.com	24 / 25	芯海科技(深圳)股份有限公司

股票代码:688595

免责声明和版权公告

本文档中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

本文档可能引用了第三方的信息,所有引用的信息均为"按现状"提供,芯海科技不对信息的准确性、真实性做任何保证。

芯海科技不对本文档的内容做任何保证,包括内容的适销性、是否适用于特定用途,也不提 供任何其他芯海科技提案、规格书或样品在他处提到的任何保证。

芯海科技不对本文档是否侵犯第三方权利做任何保证,也不对使用本文档内信息导致的任何 侵犯知识产权的行为负责。本文档在此未以禁止反言或其他方式授予任何知识产权许可,不 管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。 文档中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2022 芯海科技(深圳)股份有限公司,保留所有权利。

www.chipsea.com

25 / 25

芯海科技(深圳)股份有限公司